Targeting hepatic glutaminase activity to ameliorate hyperglycemia

  • 1.

    Miller, R.A. Birnbaum, M.J. Glucagon: acute actions on hepatic metabolism. Diabetologia 59, 1376–1381 (2016).

  • 2.

    Scott, R.A. et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44, 991–1005 (2012).

  • 3.

    Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011).

  • 4.

    Exton, J.H. Park, C.R. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3′,5′-monophosphate on gluconeogenesis in the perfused rat liver. J. Biol. Chem. 243, 4189–4196 (1968).

  • 5.

    Young, V.R. Ajami, A.M. Glutamine: the emperor or his clothes? J. Nutr. 131, 2449S–2459S discussion 2486S–2447S (2001).

  • 6.

    Miller, R.A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

  • 7.

    Titchenell, P.M. et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23, 1154–1166 (2016).

  • 8.

    Williamson, J.R. et al. Mechanisms involved in receptor-mediated changes of intracellular Ca2+ in liver. Soc. Gen. Physiol. Ser. 42, 93–116 (1987).

  • 9.

    Watford, M. Smith, E.M. Distribution of hepatic glutaminase activity and mRNA in perivenous and periportal rat hepatocytes. Biochem. J. 267, 265–267 (1990).

  • 10.

    Hu, W. et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. USA 107, 7455–7460 (2010).

  • 11.

    Suzuki, S. et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. USA 107, 7461–7466 (2010).

  • 12.

    Krishna, M.G. et al. Glucagon response to exercise is critical for accelerated hepatic glutamine metabolism and nitrogen disposal. Am. J. Physiol. Endocrinol. Metab. 279, E638–E645 (2000).

  • 13.

    Stumvoll, M., Meyer, C., Kreider, M., Perriello, G. Gerich, J. Effects of glucagon on renal and hepatic glutamine gluconeogenesis in normal postabsorptive humans. Metabolism 47, 1227–1232 (1998).

  • 14.

    Battezzati, A., Simonson, D.C., Luzi, L. Matthews, D.E. Glucagon increases glutamine uptake without affecting glutamine release in humans. Metabolism 47, 713–723 (1998).

  • 15.

    Hankard, R.G., Haymond, M.W. Darmaun, D. Role of glutamine as a glucose precursor in fasting humans. Diabetes 46, 1535–1541 (1997).

  • 16.

    Stumvoll, M. et al. Glutamine and alanine metabolism in NIDDM. Diabetes 45, 863–868 (1996).

  • 17.

    Perriello, G. et al. Estimation of gluco
    se–alanine–lactate–glutamine cycles in postabsorptive humans: role of skeletal muscle
    . Am. J. Physiol. 269, E443–E450 (1995).

  • 18.

    Nurjhan, N. et al. Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J. Clin. Invest. 95, 272–277 (1995).

  • 19.

    Halestrap, A.P. Stimulation of the respiratory chain of rat liver mitochondria between cytochrome c1 and cytochrome c by glucagon treatment of rats. Biochem. J. 172, 399–405 (1978).

  • 20.

    Yamazaki, R.K. Glucagon stimulation of mitochondrial respiration. J. Biol. Chem. 250, 7924–7930 (1975).

  • 21.

    Stumvoll, M., Perriello, G., Meyer, C. Gerich, J. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 55, 778–792 (1999).

  • 22.

    Mauger, J.P., Claret, M., Pietri, F. Hilly, M. Hormonal regulation of inositol 1,4,5-trisphosphate receptor in rat liver. J. Biol. Chem. 264, 8821–8826 (1989).

  • 23.

    Burgess, G.M., Bird, G.S., Obie, J.F. Putney, J.W. Jr. The mechanism for synergism between phospholipase C– and adenylylcyclase-linked hormones in liver. Cyclic AMP–dependent kinase augments inositol trisphosphate–mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J. Biol. Chem. 266, 4772–4781 (1991).

  • 24.

    Bygrave, F.L., Gamberucci, A., Fulceri, R. Benedetti, A. Evidence that stimulation of plasma-membrane Ca2+ inflow is an early action of glucagon and dibutyryl cyclic AMP in rat hepatocytes. Biochem. J. 292, 19–22 (1993).

  • 25.

    Fernando, K.C., Gregory, R.B. Barritt, G.J. Protein kinase A regulates the disposition of Ca2+ which enters the cytoplasmic space through store-activated Ca2+ channels in rat hepatocytes by diverting inflowing Ca2+ to mitochondria. Biochem. J. 330, 1179–1187 (1998).

  • 26.

    Hughes, B.P. Barritt, G.J. Effects of glucagon and N6O2′-dibutyryladenosine 3′:5′-cyclic monophosphate on calcium transport in isolated rat liver mitochondria. Biochem. J. 176, 295–304 (1978).

  • 27.

    Keppens, S., Vandenheede, J.R. De Wulf, H. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim. Biophys. Acta 496, 448–457 (1977).

  • 28.

    Denton, R.M. McCormack, J.G. Ca2+ transport by mammalian mitochondria and its role in hormone action. Am. J. Physiol. 249, E543–E554 (1985).

  • 29.

    Siess, E.A. Wieland, O.H. Glucagon-induced stimulation of 2-oxoglutarate metabolism in mitochondria from rat liver. FEBS Lett. 93, 301–306 (1978).

  • 30.

    Williamson, J.R., Browning, E.T., Thurman, R.G. Scholz, R. Inhibition of glucagon effects in perfused rat liver by (+)decanoylcarnitine. J. Biol. Chem. 244, 5055–5064 (1969).

  • 31.

    Lacey, J.H., Bradford, N.M., Joseph, S.K. McGivan, J.D. Increased activity of phosphate-dependent glutaminase in liver mitochondria as a result of glucagon treatment of rats. Biochem. J. 194, 29–33 (1981).

  • 32.

    Joseph, S.K. McGivan, J.D. The effect of ammonium chloride and glu
    cagon on the metabolism of glutamine in isolated liver cells from starved rats
    . Biochim. Biophys. Acta 543, 16–28 (1978).

  • 33.

    Low, S.Y., Salter, M., Knowles, R.G., Pogson, C.I. Rennie, M.J. A quantitative analysis of the control of glutamine catabolism in rat liver cells. Use of selective inhibitors. Biochem. J. 295 (Pt. 2), 617–624 (1993).

  • 34.

    Lu, W. et al. Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal. Chem. 82, 3212–3221 (2010).

  • 35.

    Melamud, E., Vastag, L. Rabinowitz, J.D. Metabolomic analysis and visualization engine for LC–MS data. Anal. Chem. 82, 9818–9826 (2010).

  • 36.

    Weitzel, M. et al. 13CFLUX2 – high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29, 143–145 (2013).

  • 37.

    Wiechert, W., Mollney, M., Isermann, N., Wurzel, M. de Graaf, A.A. Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol. Bioeng. 66, 69–85 (1999).

  • 38.

    Antoniewicz, M.R., Kelleher, J.K. Stephanopoulos, G. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab. Eng. 8, 324–337 (2006).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *