Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion

  • 1.

    Aldridge, S. Downs, A. J. (eds) The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities (Wiley, Chichester, 2011).

  • 2.

    Helmboldt, O. et al. Ullmann’s Encyclopedia of Industrial Chemistry: Aluminum Compounds, Inorganic (Wiley VCH, Weinheim, 2007).

  • 3.

    Lappert, M., Protchenko, A., Power, P. Seeber, A. Metal Amide Chemistry (Wiley, Chichester, 2009).

  • 4.

    Rappoport, Z. Marek, I. (eds) The Chemistry of Organolithium Compounds (Wiley–Blackwell, Chichester, 2004).

  • 5.

    Segawa, Y., Yamashita, M. Nozaki, K. Boryllithium: isolation, characterization, and reactivity as a boryl anion. Science 314, 113–115 (2006).

  • 6.

    Dohmeier, C., Loos, D. Schnöckel, H. Aluminum(i) and gallium(i) compounds: syntheses, structures, and reactions. Angew. Chem. Int. Ed. 35, 129–149 (1996).

  • 7.

    Nagendran, S. Roesky, H. The chemistry of aluminum(i), silicon(ii) and germanium(ii). Organometallics 27, 457–492 (2008).

  • 8.

    Jones, C. Stasch, A. in The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities (eds Aldridge, S. Downs, A. J.) 285–341 (Wiley, Chichester, 2011).

  • 9.

    Cui, C. et al. Synthesis and structure of a monomeric aluminum(i) compound [{HC(CMeNAr)2}Al] (Ar = 2,6-iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Ed. 39, 4274–4276 (2000).

  • 10.

    Li, X., Cheng, X., Song, H. Cui, C. Synthesis of HC[(CBut)(NAr)]2Al (Ar = 2,6-Pri2C6H3) and its reaction with isocyanides, a bulky azide, and H2O. Organometallics 26, 1039–1043 (2007).

  • 11.

    Linti, G. Schnöckel, H. Low valent aluminium and gallium compounds – structural variety and coordination modes to transition metal fragments. Coord. Chem. Rev. 206–207, 285–319 (2000).

  • 12.

    Asay, M., Jones, C. Driess, M. N-heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev. 111, 354–396 (2011).

  • 13.

    González-Gallardo, S., Bollermann, T., Fischer, R. A. Murugavel, R. Cyclopentadiene based low-valent group 13 metal compounds: ligands in coordination chemistry and link between metal rich molecules and intermetallic materials. Chem. Rev. 112, 3136–3170 (2012).

  • 14.

    Chu, T., Korobkov, I. Nikonov, G. I. Oxidative addition of σ bonds to an Al(i) center. J. Am. Chem. Soc. 136, 9195–9202 (2014).

  • 15.

    Crimmin, M. R., Butler, M. J. White, A. J. P. Oxidative addition of carbon–fluorine and carbon–oxygen bonds to Al(i). Chem. Commun. 51, 15994–15996 (2015).

  • 16.

    Chu, T., Boyko, Y., Korobkov, I. Nikonov, G. I. Transition metal-like oxidative addition of C–F and C–O bonds to an aluminum(i) center. Organometallics 34, 5363–5365 (2015).

  • 17.

    Sundermann, A., Reiher, M. Schoeller, W. W. Isoelectronic Arduengo-type carbene analogues with the group IIIa elements boron, aluminum, gallium, and indium. Eur. J. Inorg. Chem. 1998, 305–310 (1998).

  • 18.

    Tuononen, H. M., Roesler, R., Dutton, J. L. Ragogna, P. J. Electronic structures of main-group carbene analogues. Inorg. Chem. 46, 10693–10706 (2007).

  • 19.

    Westrum, L. J. Rakita, P. E. (eds) Handbook of Grignard Reagents 2nd edn (CRC Press, Boca Raton, 2015).

  • 20.

    Uhl, W. Organoelement compounds possessing Al–Al, Ga–Ga, In–In, and Tl–Tl single bonds. Adv. Organomet. Chem. 51, 53–108 (2004).

  • 21.

    Twamley, B. Power, P. P. Synthesis of the square-planar gallium species K2[Ga4(C6H3-2,6-Trip2)2] (Trip = C6H2-2,4,6-iPr3): the role of aryl–alkali metal ion interactions in the structure of gallium clusters. Angew. Chem. Int. Ed. 39, 3500–3503 (2000).

  • 22.

    Cordero, B. et al. Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008).

  • 23.

    Bakewell, C., Ward, B. J., White, A. J. P. Crimmin, M. R. A combined experimental and computational study on the reaction of fluoroarenes with Mg–Mg, Mg–Zn, Mg–Al and Al–Zn bonds. Chem. Sci. 9, 2348–2356 (2018).

  • 24.

    Green, S. P., Jones, C. Stasch, A. Stable magnesium(i) compounds with Mg–Mg bonds. Science 318, 1754–1757 (2007).

  • 25.

    Martínez-Martínez, A. J., Kennedy, A. R., Mulvey, R. E. O’Hara, C. T. Directed ortho-meta′- and meta-meta′-dimetalations: a template base approach to deprotonation. Science 346, 834–837 (2014).

  • 26.

    Ohsato, T. et al. A potassium diboryllithate: synthesis, bonding properties, and the deprotonation of benzene. Angew. Chem. Int. Ed. 55, 11426–11430 (2016).

  • 27.

    Cruz, C. A., Emslie, D. J. H., Harrington, L. E., Britten, J. F. Robertson, C. M. Extremely stable thorium(iv) dialkyl complexes supported by rigid tridentate 4,5-bis(anilido)xanthene and 2,6-bis(anilidomethyl)pyridine ligands. Organometallics 26, 692–701 (2007).

  • 28.

    Bonyhady, S. J. et al. β-diketiminate-stabilized magnesium(i) dimers and magnesium(ii) hydride complexes: synthesis, characterization, adduct formation, and reactivity studies. Chem. Eur. J. 16, 938–955 (2010).

  • 29.

    Zakharkin, L. I. Gavrilenko, V. V. Mutual conversions in the alumohydrides of lithium, sodium, and potassium. Russ. Chem. Bull. 11, 1076–1078 (1962).

  • 30.

    Cosier, J. Glazer, A. M. A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J. Appl. Crystallogr. 19, 105–107 (1986).

  • 31.

    CrysAlisPro v. (Agilent Technologies, 2011).

  • 32.

    Sheldrick, G. M. SHELX-2014 (2014).

  • 33.

    Hübschle, C. B., Sheldrick, G. M. Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011).

  • 34.

    Frisch, M. J. et al. Gaussian 09 Rev. D.01, (Gaussian Inc., 2009).

  • 35.

    Perdew, J. P., Burke, K. Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  • 36.

    Perdew, J. P., Ernzerhof, M. Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

  • 37.

    Adamo, C. Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

  • 38.

    Schäfer, A., Huber, C. Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

  • 39.

    Grimme, S., Antony, J., Ehrlich, S. Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104–154119 (2010).

  • 40.

    Grimme, S., Ehrlich, S. Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

  • 41.

    Glendening, E. D. et al. NBO v. 5.9 (2011).

  • 42.

    Dennington, R., Keith, T. A. Millam, J. M. GaussView v. 5.0 (Semichem Inc., 2009).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *