Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction

  • 1.

    Quasdorf, K. W. Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

  • 2.

    Liu, Y., Han, S.-J., Liu, W.-B. Stoltz, B. M. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res. 48, 740–751 (2015).

  • 3.

    Das, J. P. Marek, I. Enantioselective synthesis of all-carbon quaternary stereogenic centers in acyclic systems. Chem. Commun. 47, 4593–4623 (2011).

  • 4.

    Feng, J., Holmes, M. Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

  • 5.

    Wilson, R. M., Jen, W. S. MacMillan, D. W. C. Enantioselective organocatalytic intramolecular Diels−Alder reactions. The asymmetric synthesis of solanapyrone D. J. Am. Chem. Soc. 127, 11616–11617 (2005).

  • 6.

    Krautwald, S., Sarlah, D., Schafroth, M. A. Carreira, E. M. Enantio- and diastereo-divergent dual catalysis: α-allylation of branched aldehydes. Science 340, 1065–1068 (2013).

  • 7.

    Behenna, D. C. Stoltz, B. M. The enantioselective Tsuji allylation. J. Am. Chem. Soc. 126, 15044–15045 (2004).

  • 8.

    Murphy, J. J., Bastida, D., Paria, S., Fagnoni, M. Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. Nature 532, 218–222 (2016).

  • 9.

    Zhang, P., Le, H., Kyne, R. E. Morken, J. P. Enantioselective construction of all-carbon quaternary centers by branch-selective Pd-catalyzed allyl–allyl cross-coupling. J. Am. Chem. Soc. 133, 9716–9719 (2011).

  • 10.

    Jung, B. Hoveyda, A. H. Site- and enantioselective formation of allene-bearing tertiary or quaternary carbon stereogenic centers through NHC–Cu-catalyzed allylic substitution. J. Am. Chem. Soc. 134, 1490–1493 (2012).

  • 11.

    Mei, T.-S., Patel, H. H. Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).

  • 12.

    Bhat, V., Welin, E. R., Guo, X. Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic Resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

  • 13.

    Braun, M. Kotter, W. Titanium(IV)-catalyzed dynamic kinetic asymmetric transformation of alcohols, silyl ethers, and acetals under carbon allylation. Angew. Chem. Int. Ed. 43, 514–517 (2004).

  • 14.

    Zhao, W., Wang, Z., Chu, B. Sun, J. Enantioselective formation of all-carbon quaternary stereocenters from indoles and tertiary alcohols bearing a directing group. Angew. Chem. Int. Ed. 54, 1910–1913 (2015).

  • 15.

    Reisman, S. E., Doyle, A. G. Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).

  • 16.

    Xu, H., Zuend, S. J., Woll, M. G., Tao, Y. Jacobsen, E. N. Asymmetric cooperative catalysis of strong Brønsted acid-promoted reactions using chiral ureas. Science 327, 986–990 (2010).

  • 17.

    Brak, K. Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

  • 18.

    Kennedy, C. R., Lin, S. Jacobsen, E. N. The cation–π interaction in small-molecule catalysis. Angew. Chem. Int. Ed. 55, 12596–12624 (2016).

  • 19.

    Neel, A. J., Hilton, M. J., Sigman, M. S. Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

  • 20.

    Banik, S. M., Levina, A., Hyde, A. M. Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis. Science 358, 761–764 (2017).

  • 21.

    Brown, H. C. Okamoto, Y. Substituent constants for aromatic substitution. J. Am. Chem. Soc. 79, 1913–1917 (1957).

  • 22.

    McKinney, J. D., Gottschalk, K. E. Pedersen, L. The polarizability of planar aromatic systems. An application to polychlorinated biphenyls (PCB’s), dioxins and polyaromatic hydrocarbons. J. Mol. Struct. (Theochem) 105, 427–438 (1983).

  • 23.

    Hunter, C. A. Sanders, J. K. M. The nature of π–π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

  • 24.

    Blackmond, D. G. Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew. Chem. Int. Ed. 44, 4302–4320 (2005).

  • 25.

    Singleton, D. A. Thomas, A. A. High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance. J. Am. Chem. Soc. 117, 9357–9358 (1995).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *