07.03.2021

Lightwave valleytronics in a monolayer of tungsten diselenide

  • 1.

    Markov, I. L. Limits on fundamental limits to computation. Nature 512, 147–154 (2014).

  • 2.

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

  • 3.

    Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon. 8, 205–213 (2014).

  • 4.

    Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

  • 5.

    Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

  • 6.

    Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2012).

  • 7.

    Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

  • 8.

    Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

  • 9.

    Higuchi, T., Heide, C., Ullman, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

  • 10.

    Vampa, G. et al. Linking high-harmonics from gases and solids. Nature 522, 462–464 (2015).

  • 11.

    Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

  • 12.

    Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

  • 13.

    Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

  • 14.

    Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

  • 15.

    Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

  • 16.

    Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

  • 17.

    Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

  • 18.

    Xu, X., Wang, Y., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  • 19.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  • 20.

    Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

  • 21.

    Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).

  • 22.

    Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1929).

  • 23.

    Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, Cambridge, 2012).

  • 24.

    Yan, J.-Y. Theory of excitonic high-order sideband generation in semiconductors under a strong terahertz field. Phys. Rev. B 78, 075204 (2008).

  • 25.

    Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

  • 26.

    Banks, H. B. et al. Dynamical birefringence: electron–hole recollisions as probes of Berry curvature. Phys. Rev. X 7, 041042 (2017).

  • 27.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

  • 28.

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

  • 29.

    Wang, G. et al. Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 117, 187401 (2016).

  • 30.

    Rycerz, A., Tworzydło, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007).

  • 31.

    Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 16, 1204–1212 (1999).

  • 32.

    Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889–893 (2015).

  • 33.

    Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. Wien2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. Technology, Vienna, 2013).

  • 34.

    Kormányos, A. et al. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 022001 (2015).

  • 35.

    Singh, D. J. & Nordström, L. Planewaves, Pseudopotentials, and the LAPW Method (Springer, New York, 2006).

  • 36.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

  • 37.

    Steinhoff, A., Rösner, M., Jahnke, F., Wehling, T. O. & Gies, C. Influence of excited carriers on the optical and electronic properties of MoS2. Nano Lett. 14, 3743–3748 (2014).

  • 38.

    Mootz, M., Kira, M. & Koch, S. W. Sequential build-up of quantum-optical correlations. J. Opt. Soc. Am. B 29, A17–A24 (2012).

  • 39.

    Kira, M. Hyperbolic Bloch equations: atom-cluster kinetics of an interacting Bose gas. Ann. Phys. 356, 185–243 (2015).

  • 40.

    Mootz, M., Kira, M. & Koch, S. W. Pair-excitation energetics of highly correlated many-body states. New J. Phys. 15, 093040 (2013).

  • 41.

    Kira, M. & Koch, S. W. Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron. 30, 155–296 (2006).

  • 42.

    Kira, M. Coherent quantum depletion of an interacting atom condensate. Nat. Commun. 6, 6624 (2015).

  • 43.

    Smith, R. P. et al. Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells. Phys. Rev. Lett. 104, 247401 (2010).

  • 44.

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

  • Spread the love

    Leave a Reply

    Your email address will not be published. Required fields are marked *