13.04.2021

Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks

  • 1.

    Hawkins, T., Mirigian, M., Yasar, M. S. & Ross, J. L. Mechanics of microtubules. J. Biomech. 43, 23–30 (2010).

  • 2.

    Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–592 (2010).

  • 3.

    Block, S. M., Blair, D. F. & Berg, H. C. Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514–518 (1989).

  • 4.

    Lewis, J. K., Bothner, B., Smith, T. J. & Siuzdak, G. Antiviral agent blocks breathing of the common cold virus. Proc. Natl Acad. Sci. USA 95, 6774–6778 (1998).

  • 5.

    Lok, S.-M. et al. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat. Struct. Mol. Biol. 15, 312–317 (2008).

  • 6.

    Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).

  • 7.

    Kim, T., Al-Muhanna, M. K., Al-Suwaidan, S. D., Al-Kaysi, R. O. & Bardeen, C. J. Photoinduced curling of organic molecular crystal nanowires. Angew. Chem. Int. Edn 52, 6889–6893 (2013).

  • 8.

    Panda, M. K. et al. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal. Nat. Chem. 7, 65–72 (2015).

  • 9.

    Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015).

  • 10.

    Barthelet, K., Marrot, J., Riou, D. & Ferey, G. A breathing hybrid organic–inorganic solid with very large pores and high magnetic characteristics. Angew. Chem. Int. Edn Engl. 41, 281–284 (2002).

  • 11.

    Sakata, Y. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339, 193–196 (2013).

  • 12.

    Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

  • 13.

    Suzuki, Y. et al. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369–373 (2016).

  • 14.

    Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

  • 15.

    Worthy, A. et al. Atomic resolution of structural changes in elastic crystals of copper(ii) acetylacetonate. Nat. Chem. 10, 65–69 (2017).

  • 16.

    Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

  • 17.

    Couck, S. et al. An amine-functionalized MIL-53 metal–organic framework with large separation power for CO2 and CH4. J. Am. Chem. Soc. 131, 6326–6327 (2009).

  • 18.

    Chen, Q. et al. A controllable gate effect in cobalt(ii) organic frameworks by reversible structure transformations. Angew. Chem. Int. Edn 52, 11550–11553 (2013).

  • 19.

    Ghosh, S. & Reddy, C. M. Elastic and bendable caffeine cocrystals: implications for the design of flexible organic materials. Angew. Chem. Int. Edn 51, 10319–10323 (2012).

  • 20.

    Commins, P., Hara, H. & Naumov, P. Self-healing molecular crystals. Angew. Chem. Int. Edn 55, 13028–13032 (2016).

  • 21.

    Tanaka, T. et al. Phase transitions in ionic gels. Phys. Rev. Lett. 45, 1636–1639 (1980).

  • 22.

    Phadke, A. et al. Rapid self-healing hydrogels. Proc. Natl Acad. Sci. USA 109, 4383–4388 (2012).

  • 23.

    Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).

  • 24.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

  • 25.

    Elliott, J. E., Macdonald, M., Nie, J. & Bowman, C. N. Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45, 1503–1510 (2004).

  • 26.

    Theil, E. C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56, 289–315 (1987).

  • 27.

    Lawson, D. M. et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544 (1991).

  • 28.

    Kaya, D., Pekcan, Ö. & Yılmaz, Y. Direct test of the critical exponents at the sol-gel transition. Phys. Rev. E 69, 016117 (2004).

  • 29.

    Strandman, S. & Zhu, X. Self-healing supramolecular hydrogels based on reversible physical interactions. Gels 2, 16 (2016).

  • 30.

    Denisin, A. K. & Pruitt, B. L. Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. Appl. Mater. Interfaces 8, 21893–21902 (2016).

  • 31.

    Huard, D. J., Kane, K. M. & Tezcan, F. A. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nat. Chem. Biol. 9, 169–176 (2013).

  • 32.

    Sontz, P. A., Bailey, J. B., Ahn, S. & Tezcan, F. A. A metal organic framework with spherical protein nodes: rational chemical design of 3D protein crystals. J. Am. Chem. Soc. 137, 11598–11601 (2015).

  • 33.

    Bradford, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

  • 34.

    Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).

  • 35.

    Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

  • 36.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

  • 37.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

  • 38.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 66, 486–501 (2010).

  • 39.

    Kleywegt, G. J. & Jones, T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D 50, 178–185 (1994).

  • 40.

    The PyMOL Molecular Graphics System Version 1.3, (Schrödinger LLC).

  • 41.

    Levi, S. et al. Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. J. Biol. Chem. 263, 18086–18092 (1988).

  • Spread the love

    Leave a Reply

    Your email address will not be published. Required fields are marked *