09.12.2021

An absolute sodium abundance for a cloud-free ‘hot Saturn’ exoplanet

  • 1.

    Seager, S. Sasselov, D. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916–921 (2000).

  • 2.

    Sudarsky, D. et al. Albedo and reflection spectra of extrasolar giant planets. Astrophys. J. 538, 885–903 (2000).

  • 3.

    Burrows, A. et al. The near-infrared and optical spectra of methane dwarfs and brown dwarfs. Astrophys. J. 531, 438–446 (2000).

  • 4.

    Charbonneau, D. et al. Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002).

  • 5.

    Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

  • 6.

    Wyttenbach, A. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS). I. Detection of hot neutral sodium at high altitudes on WASP-49b. Astron. Astrophys. 602, A36 (2017).

  • 7.

    Fortney, J. J. et al. On the indirect detection of sodium in the atmosphere of the planetary companion to HD 209458. Astrophys. J. 589, 615–622 (2003).

  • 8.

    Line, M. R. Parmentier, V. The influence of nonuniform cloud cover on transit transmission spectra. Astrophys. J. 820, 78 (2016).

  • 9.

    Benneke, B. Seager, S. Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys. J. 753, 100 (2012).

  • 10.

    Kreidberg, L. et al. A precise water abundance measurement for the hot Jupiter WASP-43b. Astrophys. J. 793, 27 (2014).

  • 11.

    Line, M. R. et al. No thermal inversion and a solar water abundance for the hot Jupiter HD 209458b from HST/WFC3 spectroscopy. Astrophys. J. 152, 203 (2016).

  • 12.

    Wakeford, H. et al. HAT-P-26b: a Neptune-mass exoplanet with a well-constrained heavy element abundance. Science 356, 628–631 (2017).

  • 13.

    Hellier, C. et al. Transiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b. Mon. Not. R. Astron. Soc. 440, 1982–1992 (2014).

  • 14.

    Fortney, J. J., Lodders, K., Marley, M. S. Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008).

  • 15.

    Collins, G. W. The Fundamentals of Stellar Astrophysics (W. H. Freeman and Co., New York, 1989).

  • 16.

    Allard, N. F. et al. A new model for brown dwarf spectra including accurate unified line shape theory for the Na I and K I resonance line profiles. Astron. Astrophys. 411, 473–476 (2003).

  • 17.

    Burrows, A. Volobuyev, M. Calculations of the far-wing line profiles of sodium and potassium in the atmospheres of substellar-mass objects. Astrophys. J. 583, 985–995 (2003).

  • 18.

    Johnas, C. M. S. The effects of new Na I D line profiles in cool atmospheres. Astron. Astrophys. 466, 323–325 (2007).

  • 19.

    Burgasser, A. J. The spectra of T dwarfs. II. Red optical data. Astrophys. J. 594, 510–524 (2003).

  • 20.

    Nikolov, N. et al. VLT FORS2 comparative transmission spectroscopy: detection of Na in the atmosphere of WASP-39b from the ground. Astrophys. J. 832, 191 (2016).

  • 21.

    Helling, Ch. et al. The mineral clouds on HD 209458b and HD 189733b. Mon. Not. R. Astron. Soc. 460, 855–883 (2016).

  • 22.

    Tremblin, P. Fingering convection and cloudless models for cool brown dwarf atmospheres. Astrophys. J. 804, 17 (2015).

  • 23.

    Asplund, M. et al. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

  • 24.

    Fortney, J. J. et al. A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophys. J. 775, 80 (2013).

  • 25.

    Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

  • 26.

    Mordasini, C. et al. Extrasolar planet population synthesis. IV. Correlations with disk metallicity, mass, and lifetime. Astron. Astrophys. 541, A97 (2012).

  • 27.

    Wong, M. H. et al. Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171, 153–170 (2004).

  • 28.

    Fletcher, L. N. et al. Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus 199, 351–367 (2009).

  • 29.

    Karkoschka, E. Tomasko, M. G. The haze and methane distributions on Neptune from HST-STIS spectroscopy. Icarus 211, 780–797 (2011).

  • 30.

    Sromovsky, L. A. et al. Methane on Uranus: the case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy. Icarus 215, 292–312 (2011).

  • 31.

    Appenzeller, I. et al. Successful commissioning of FORS1 – the first optical instrument on the VLT. The Messenger 94, 1–6 (1998).

  • 32.

    Gibson, N. P. et al. VLT/FORS2 comparative transmission spectroscopy II: confirmation of a cloud deck and Rayleigh scattering in WASP-31b, but no potassium? Mon. Not. R. Astron. Soc. 467, 4591–4605 (2017).

  • 33.

    Roeser, S. et al. The PPMXL catalogue of positions and proper motions on the ICRS. Combining USNO-B1.0 and the two micron all sky survey (2MASS). Astron. J. 139, 2440–2447 (2010).

  • 34.

    Nikolov, N. et al. Hubble Space Telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b. Mon. Not. R. Astron. Soc. 437, 46–66 (2014).

  • 35.

    Gibson, N. P. et al. A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy. Mon. Not. R. Astron. Soc. 419, 2683–2694 (2012).

  • 36.

    Evans, T. M. et al. An ultrahot gas-giant exoplanet with a stratosphere. Nature 548, 58–61 (2017).

  • 37.

    Nikolov, N. et al. Hubble PanCET: an isothermal day-side atmosphere for the bloated gas-giant HAT-P-32Ab. Mon. Not. R. Astron. Soc. 474, 1705–1717 (2018).

  • 38.

    Ambikasaran, S. et al. Fast direct methods for Gaussian processes. IT Process Automation Manager (ITPAM) 38, 252–265 (2015).

  • 39.

    Foreman-Mackey, D. George: Gaussian process regression. Astrophys. Source Code Library ascl.soft11015 (2015).

  • 40.

    Foreman-Mackey, D. et al. emcee: the MCMC hammer. Proc. Astron. Soc. Pacif. 125, 306–312 (2013).

  • 41.

    Foreman-Mackey, D. corner.py: scatterplot matrices in Python. J. Open Source Softw. 1, 24 (2016).

  • 42.

    Mandel, K. Agol, E. Analytic lightcurves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002).

  • 43.

    Magic, Z. et al. The Stagger-grid: a grid of 3D stellar atmosphere models. IV. Limb darkening coefficients. Astron. Astrophys. 573, A90 (2015).

  • 44.

    Claret, A. A new non-linear limb-darkening law for LTE stellar atmosphere models II. Geneva and Walraven systems: calculations for −5.0 ≤ log[M/H] ≤ +1, 2000 K ≤T eff ≤ 50000 K at several surface gravities. Astron. Astrophys. 401, 657–660 (2003).

  • 45.

    Espinoza, N. Jordan, A. Limb darkening and exoplanets: testing stellar model atmospheres and identifying biases in transit parameters. Mon. Not. R. Astron. Soc. 450, 1879–1899 (2015).

  • 46.

    Espinoza, N. Jordan, A. Limb darkening and exoplanets – II. Choosing the best law for optimal retrieval of transit parameters. Mon. Not. R. Astron. Soc. 457, 3573–3581 (2016).

  • 47.

    Markwardt, C. B. Non-linear least-squares fitting in IDL with MPFIT. Astron. Soc. Pacif. Conf. Ser. 411, 251–254 (2009).

  • 48.

    Sedaghati, E. et al. Detection of titanium oxide in the atmosphere of a hot Jupiter. Nature 549, 238–241 (2017).

  • 49.

    Sedaghati, E. et al. Potassium detection in the clear atmosphere of a hot-Jupiter. FORS2 transmission spectroscopy of WASP-17b. Astron. Astrophys. 596, A47 (2016).

  • 50.

    Lendl, M. FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b. Astron. Astrophys. 587, A67 (2016).

  • 51.

    Southworth, J. Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses. Mon. Not. R. Astron. Soc. 386, 1644–1666 (2008).

  • 52.

    Mallonn, M. et al. Transmission spectroscopy of the inflated exo-Saturn HAT-P-19b. Astron. Astrophys. 580, A60 (2015).

  • 53.

    Stevenson, K. B. A search for water in the atmosphere of HAT-P-26b using LDSS-3C. Astrophys. J. 817, 141 (2016).

  • 54.

    Nikolov, N. et al. HST hot-Jupiter transmission spectral survey: haze in the atmosphere of WASP-6b. Mon. Not. R. Astron. Soc. 447, 463–478 (2015).

  • 55.

    Rackham, B. et al. ACCESS I: an optical transmission spectrum of GJ 1214b reveals a heterogeneous stellar photosphere. Astrophys. J. 834, 151 (2017).

  • 56.

    Huitson, C. M. Gemini/GMOS transmission spectral survey: complete optical transmission spectrum of the hot Jupiter WASP-4b. Astron. J. 154, 95–113 (2017).

  • 57.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Automatic Control 19, 716–723 (1974).

  • 58.

    Gibson, N. P. Reliable inference of exoplanet light-curve parameters using deterministic and stochastic systematics models. Mon. Not. R. Astron. Soc. 445, 3401–3414 (2014).

  • 59.

    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

  • 60.

    Pont, F. et al. The effect of red noise on planetary transit detection. Mon. Not. R. Astron. Soc. 373, 231–242 (2006).

  • 61.

    Lodders, K. Alkali element chemistry in cool dwarf atmospheres. Astrophys. J. 519, 793–801 (1999).

  • 62.

    Lodders, K. Fegley, B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen. Icarus 155, 393–424 (2002).

  • 63.

    Freedman, R. S. et al. Line and mean opacities for ultracool dwarfs and extrasolar planets. Astrophys. J. Suppl. Ser. 174, 504–513 (2008).

  • 64.

    Madhusudhan, N. Seager, S. A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009).

  • 65.

    Amundsen, D. S. et al. Accuracy tests of radiation schemes used in hot Jupiter global circulation models. Astron. Astrophys. 564, A59 (2014).

  • 66.

    Amundsen, D. S. et al. Treatment of overlapping gaseous absorption with the correlated-k method in hot Jupiter and brown dwarf atmosphere models. Astron. Astrophys. 598, A97 (2017).

  • 67.

    Tremblin, P. et al. Advection of potential temperature in the atmosphere of irradiated exoplanets: a robust mechanism to explain radius inflation. Astrophys. J. 841, 30 (2017).

  • 68.

    Drummond, B. The effects of consistent chemical kinetics calculations on the pressure-temperature profiles and emission spectra of hot Jupiters. Astron. Astrophys. 594, A69 (2016).

  • 69.

    Goyal, J. M. A library of ATMO forward model transmission spectra for hot Jupiter exoplanets. Mon. Not. R. Astron. Soc. 474, 5158–5185 (2017).

  • 70.

    Lecavelier des Etangs, A. et al. Rayleigh scattering in the transit spectrum of HD 189733b. Astron. Astrophys. 481, L83–L86 (2008).

  • 71.

    Eastman, J., Gaudi, B. S. Agol, E. EXOFAST: a fast-exoplanetary fitting suite in IDL. Publ. Astron. Soc. Pacif. 125, 83–112 (2013).

  • 72.

    Drummond, B. et al. Observable signatures of wind-driven chemistry with a fully consistent three-dimensional radiative hydrodynamics model of HD 209458b. Astrophys. J. 855, 31 (2018).

  • 73.

    Wakeford, H. et al. The complete transmission spectrum of WASP-39b with a precise water constraint. Astron. J. 155, 29–43 (2018).

  • 74.

    Thorngren, D. P. et al. The mass-metallicity relation for giant planets. Astrophys. J. 831, 64 (2016).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *