A small peptide modulates stomatal control via abscisic acid in long-distance signalling

  • 1.

    Michell, A. R., Debnam, E. S. Unwin, R. J. Regulation of renal function by the gastrointestinal tract: potential role of gut-derived peptides and hormones. Annu. Rev. Physiol. 70, 379–403 (2008).

  • 2.

    Steudle, E. The cohesion–tension mechanism and the acquisition of water by plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 847–875 (2001).

  • 3.

    Christmann, A., Grill, E. Huang, J. Hydraulic signals in long-distance signaling. Curr. Opin. Plant Biol. 16, 293–300 (2013).

  • 4.

    Kim, T. H., Böhmer, M., Hu, H., Nishimura, N. Schroeder, J. I. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61, 561–591 (2010).

  • 5.

    Hanada, K., Zhang, X., Borevitz, J. O., Li, W. H. Shiu, S. H. A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res. 17, 632–640 (2007).

  • 6.

    Hanada, K. et al. sORF finder: a program package to identify small open reading frames with high coding potential. Bioinformatics 26, 399–400 (2010).

  • 7.

    Hanada, K. et al. Small open reading frames associated with morphogenesis are hidden in plant genomes. Proc. Natl Acad. Sci. USA 110, 2395–2400 (2013).

  • 8.

    Murphy, E., Smith, S. De Smet, I. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell 24, 3198–3217 (2012).

  • 9.

    Czyzewicz, N., Yue, K., Beeckman, T. De Smet, I. Message in a bottle: small signalling peptide outputs during growth and development. J. Exp. Bot. 64, 5281–5296 (2013).

  • 10.

    Endo, S., Betsuyaku, S. Fukuda, H. Endogenous peptide ligand–receptor systems for diverse signaling networks in plants. Curr. Opin. Plant Biol. 21, 140–146 (2014).

  • 11.

    Shinohara, H. Matsubayashi, Y. Arabinosylated glycopeptide hormones: new insights into CLAVATA3 structure. Curr. Opin. Plant Biol. 13, 515–519 (2010).

  • 12.

    Betsuyaku, S., Sawa, S. Yamada, M. The function of the CLE peptides in plant development and plant–microbe interactions. Arabidopsis Book 9, (e0149 (2011).

  • 13.

    Ito, Y. et al. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313, 842–845 (2006).

  • 14.

    Hirakawa, Y. et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc. Natl Acad. Sci. USA 105, 15208–15213 (2008).

  • 15.

    Iuchi, S. et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27, 325–333 (2001).

  • 16.

    Endo, A. et al. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 147, 1984–1993 (2008).

  • 17.

    Rodriguez-Villalon, A. et al. Molecular genetic framework for protophloem formation. Proc. Natl Acad. Sci. USA 111, 11551–11556 (2014).

  • 18.

    Rodriguez-Villalon, A., Gujas, B., van Wijk, R., Munnik, T. Hardtke, C. S. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-bi
    phosphate levels and systemically affects root branching. Development 142, 1437–1446 (2015).

  • 19.

    Czyzewicz, N. et al. Modulation of Arabidopsis and monocot root architecture by CLAVATA3/EMBRYO SURROUNDING REGION 26 peptide. J. Exp. Bot. 66, 5229–5243 (2015).

  • 20.

    Kinoshita, A. et al. Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol. 48, 1821–1825 (2007).

  • 21.

    Kuromori, T. et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl Acad. Sci. USA 107, 2361–2366 (2010).

  • 22.

    Matsubayashi, Y. Posttranslationally modified small-peptide signals in plants. Annu. Rev. Plant Biol. 65, 385–413 (2014).

  • 23.

    DeYoung, B. J. et al. The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J. 45, 1–16 (2006).

  • 24.

    Kondo, Y., Hirakawa, Y., Kieber, J. J. Fukuda, H. CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling. Plant Cell Physiol. 52, 37–48 (2011).

  • 25.

    Okamoto, S., Shinohara, H., Mori, T., Matsubayashi, Y. Kawaguchi, M. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat. Commun. 4, 2191 (2013).

  • 26.

    Axelos, M., Curie, C., Mazzolini, L., Bardet, C. Lescure, B. A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol. Biochem. 30, 123–128 (1992).

  • 27.

    Xiao, A. et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30, 1180–1182 (2014).

  • 28.

    Osakabe, Y. et al. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci. Rep. 6, 26685 (2016).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *