Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization

  • 1.

    Jasnow, A.M., Lynch, J.F. III., Gilman, T.L. & Riccio, D.C. Perspectives on fear generalization and its implications for emotional disorders. J. Neurosci. Res. 95, 821–835 (2017).

  • 2.

    Biedenkapp, J.C. & Rudy, J. W. Context pre-exposure prevents forgetting of a contextual fear memory: implication for regional changes in brain activation patterns associated with recent and remote memory tests. Learn. Mem. 14, 200–203 (2007).

  • 3.

    Wiltgen, B.J. & Silva, A.J. Memory for context becomes less specific with time. Learn. Mem. 14, 313–317 (2007).

  • 4.

    Poulos, A.M. et al. Conditioning- and time-dependent increases in context fear and generalization. Learn. Mem. 23, 379–385 (2016).

  • 5.

    Besnard, A. & Sahay, A. Adult hippocampal neurogenesis, fear generalization and stress. Neuropsychopharmacology 41, 24–44 (2016).

  • 6.

    Liberzon, I. & Abelson, J.L. Context processing and the neurobiology of post-traumatic stress disorder. Neuron 92, 14–30 (2016).

  • 7.

    Jovanovic, T. & Ressler, K.J. How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am. J. Psychiatry 167, 648–662 (2010).

  • 8.

    Leal, S.L. & Yassa, M.A. Neurocognitive aging and the hippocampus across species. Trends Neurosci. 38, 800–812 (2015).

  • 9.

    Bakker, A. et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74, 467–474 (2012).

  • 10.

    Xu, W. & Südhof, T.C. A neural circuit for memory specificity and generalization. Science 339, 1290–1295 (2013).

  • 11.

    Ruediger, S. et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514–518 (2011).

  • 12.

    Kheirbek, M.A., Klemenhagen, K.C., Sahay, A. & Hen, R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat. Neurosci. 15, 1613–1620 (2012).

  • 13.

    Likhtik, E., Stujenske, J.M., Topiwala, M.A., Harris, A.Z. & Gordon, J.A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17, 106–113 (2014).

  • 14.

    Jones, G.L. et al. A genetic link between discriminative fear coding by the lateral amygdala, dopamine and fear generalization. eLife 4, e08969 (2015).

  • 15.

    Lynch, J.F., Winiecki, P., Gilman, T.L., Adkins, J.M. & Jasnow, A.M. Hippocampal GABAB(1a) receptors constrain generalized contextual fear. Neuropsychopharmacology 42, 914–924 (2017).

  • 16.

    McClelland, J.L., McNaughton, B.L. & O’Reilly, R.C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 1
    02
    , 419–457 (1995).

  • 17.

    Frankland, P.W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

  • 18.

    Winocur, G., Moscovitch, M. & Sekeres, M. Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nat. Neurosci. 10, 555–557 (2007).

  • 19.

    Wiltgen, B.J. et al. The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr. Biol. 20, 1336–1344 (2010).

  • 20.

    Winocur, G., Moscovitch, M. & Bontempi, B. Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal–neocortical interactions. Neuropsychologia 48, 2339–2356 (2010).

  • 21.

    Teyler, T.J. & Rudy, J.W. The hippocampal indexing theory and episodic memory: updating the index. Hippocampus 17, 1158–1169 (2007).

  • 22.

    Hardt, O., Nader, K. & Nadel, L. Decay happens: the role of active forgetting in memory. Trends Cogn. Sci. 17, 111–120 (2013).

  • 23.

    Frankland, P.W., Bontempi, B., Talton, L.E., Kaczmarek, L. & Silva, A.J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883 (2004).

  • 24.

    Liu, X. et al. Identification and manipulation of memory engram cells. Cold Spring Harb. Symp. Quant. Biol. 79, 59–65 (2014).

  • 25.

    Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017).

  • 26.

    Acsády, L., Kamondi, A., Sík, A., Freund, T. & Buzsáki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403 (1998).

  • 27.

    Martin, E.A. et al. The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus. eLife 4, e09395 (2015).

  • 28.

    Torborg, C.L., Nakashiba, T., Tonegawa, S. & McBain, C.J. Control of CA3 output by feedforward inhibition despite developmental changes in the excitation–inhibition balance. J. Neurosci. 30, 15628–15637 (2010).

  • 29.

    Mori, M., Abegg, M.H., Gähwiler, B.H. & Gerber, U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431, 453–456 (2004).

  • 30.

    Porro, F. et al. β-adducin (Add2) KO mice show synaptic plasticity, motor coordination and behavioral deficits accompanied by changes in the expression and phosphorylation levels of the α- and γ-adducin subunits. Genes Brain Behav. 9, 84–96 (2010).

  • 31.

    Rabenstein, R.L. et al. Impaired synaptic plasticity and learning in mice lacking β-adducin, an actin-regulating protein. J. Neurosci. 25, 2138–2145 (2005).

  • 32.

    Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

  • 33.

    Gan, J. et al. Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo. Neuron 93, 308–314 (2017).

  • 34.

    Jadhav, S.P., Kemere, C., German, P.W. & Frank, L.M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

  • 35.

    Ognjanovski, N. et al. Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation. Nat. Commun. 8, 15039 (2017).

  • 36.

    Nakashiba, T., Buhl, D.L., McHugh, T.J. & Tonegawa, S. Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62, 781–787 (2009).

  • 37.

    Çaliskan, G. et al. Identification of parvalbumin interneurons as cellular substrate of fear memory persistence. Cereb. Cortex 26, 2325–2340 (2016).

  • 38.

    Wilson, I.A., Ikonen, S., Gallagher, M., Eichenbaum, H. & Tanila, H. Age-associated alterations of hippocampal place cells are subregion specific. J. Neurosci. 25, 6877–6886 (2005).

  • 39.

    Yassa, M.A. et al. Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus 21, 968–979 (2011).

  • 40.

    Simkin, D. et al. Aging-related hyperexcitability in CA3 pyramidal neurons is mediated by enhanced A-type K+ channel function and expression. J. Neurosci. 35, 13206–13218 (2015).

  • 41.

    Thomé, A., Gray, D.T., Erickson, C.A., Lipa, P. & Barnes, C.A. Memory impairment in aged primates is associated with region-specific network dysfunction. Mol. Psychiatry 21, 1257–1262 (2016).

  • 42.

    Villanueva-Castillo, C., Tecuatl, C., Herrera-López, G. & Galván, E.J. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells. Neurobiol. Aging 49, 119–137 (2017).

  • 43.

    Geinisman, Y., deToledo-Morrell, L., Morrell, F., Persina, I.S. & Rossi, M. Age-related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased stereological dissector technique. Hippocampus 2, 437–444 (1992).

  • 44.

    Reijmers, L.G., Perkins, B.L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007).

  • 45.

    Scobie, K.N. et al. Krüppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis. J. Neurosci. 29, 9875–9887 (2009).

  • 46.

    Lundquist, E.A., Herman, R.K., Shaw, J.E. & Bargmann, C.I. UNC-115, a conserved protein with predicted LIM and actin-binding domains, mediates axon guidance in C. elegans. Neuron 21, 385–392 (1998).

  • 47.

    Barrientos, T. et al. Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. J. Biol. Chem. 282, 8393–8403 (2007).

  • 48.

    Matsuda, M., Yamashita, J.K., Tsukita, S.
    & Furuse, M. ABLIM3 is a novel component of adherens junctions with actin-binding activity. Eur. J. Cell Biol. 89, 807–816 (2010).

  • 49.

    Cao, J. et al. miR-129-3p controls cilia assembly by regulating CP110 and actin dynamics. Nat. Cell Biol. 14, 697–706 (2012).

  • 50.

    Beier, K.T. et al. Anterograde or retrograde trans-synaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc. Natl. Acad. Sci. USA 108, 15414–15419 (2011).

  • 51.

    Kamiya, H., Shinozaki, H. & Yamamoto, C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fiber synapses. J. Physiol. (Lond.) 493, 447–455 (1996).

  • 52.

    Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

  • 53.

    Goshen, I. et al. Dynamics of retrieval strategies for remote memories. Cell 147, 678–689 (2011).

  • 54.

    Vazdarjanova, A. & McGaugh, J.L. Basolateral amygdala is involved in modulating consolidation of memory for classical fear conditioning. J. Neurosci. 19, 6615–6622 (1999).

  • 55.

    Redondo, R.L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014).

  • 56.

    Girardeau, G., Inema, I. & Buzsáki, G. Reactivations of emotional memory in the hippocampus–amygdala system during sleep. Nat. Neurosci. 20, 1634–1642 (2017).

  • 57.

    Yang, C. & Svitkina, T. Filopodia initiation: focus on the Arp2–3 complex and formins. Cell Adh. Migr. 5, 402–408 (2011).

  • 58.

    Mejillano, M.R. et al. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363–373 (2004).

  • 59.

    Wilson, M.A. & McNaughton, B.L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

  • 60.

    Bartos, M., Alle, H. & Vida, I. Role of microcircuit structure and input integration in hippocampal interneuron recruitment and plasticity. Neuropharmacology 60, 730–739 (2011).

  • 61.

    Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth and spine maturation. Neuron 52, 255–269 (2006).

  • 62.

    Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

  • 63.

    Drokhlyansky, E. et al. The brain parenchyma has a type I interferon response that can limit virus spread. Proc. Natl. Acad. Sci. USA 114, E95–E104 (2017).

  • 64.

    McAvoy, K.M. et al. Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron 91, 1356–1373 (2016).

  • 65.

    Ikrar, T. et al. Adult neurogenesis modifies excitability of the dentate gyrus. Front. Ne
    ural Circuits
    7, 204 (2013).

  • http://feeds.nature.com/nm/rss/current