Current understanding of the human microbiome

  • 1.

    Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

  • 2.

    Turnbaugh, P.J. et al. The human microbiome project. Nature 449, 804–810 (2007).

  • 3.

    Locey, K.J. & Lennon, J.T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 113, 5970–5975 (2016).

  • 4.

    Frank, D.N. et al. Molecular–phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785 (2007).

  • 5.

    Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

  • 6.

    Ni, J. et al. A role for bacterial urease in gut dysbiosis and Crohn’s disease. Sci. Transl. Med. 9, eaah6888 (2017).

  • 7.

    Kostic, A.D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

  • 8.

    Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48, 186–194 (2015).

  • 9.

    Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 21, 786–796 (2016).

  • 10.

    Gilbert, J.A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).

  • 11.

    Punt, C.J.A., Koopman, M. & Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 14, 235–246 (2017).

  • 12.

    Debelius, J. et al. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 17, 217 (2016).

  • 13.

    Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289 (2014).

  • 14.

    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

  • 15.

    Goodrich, J.K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

  • 16.

    Ridaura, V.K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

  • 17.

    Turnbaugh, P.J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl. Acad. Sci. USA 107, 7503–7508 (2010).

  • 18.

    Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

  • 19.

    Seedorf, H. et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 253–266 (2014).

  • 20.

    Karczewski, J., Poniedziałek, B., Adamski, Z. & Rzymski, P. The effects of the microbiota on the host immune system. Autoimmunity 47, 494–504 (2014).

  • 21.

    Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1897 (2016).

  • 22.

    Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

  • 23.

    O’Toole, P.W. Changes in the intestinal microbiota from adulthood through to old age. Clin. Microbiol. Infect. 18 (Suppl. 4), 44–46 (2012).

  • 24.

    Koenig, J.E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 108 (Suppl. 1), 4578–4585 (2011).

  • 25.

    Weng, M. & Walker, W.A. The role of gut microbiota in programming the immune phenotype. J. Dev. Orig. Health Dis. 4, 203–214 (2013).

  • 26.

    Maynard, C.L., Elson, C.O., Hatton, R.D. & Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).

  • 27.

    Knights, D. et al. Rethinking “enterotypes”. Cell Host Microbe 16, 433–437 (2014).

  • 28.

    Jeffery, I.B., Claesson, M.J., O’Toole, P.W. & Shanahan, F. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10, 591–592 (2012).

  • 29.

    Grice, E.A. & Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

  • 30.

    Grice, E.A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

  • 31.

    Caporaso, J.G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

  • 32.

    Kort, R. et al. Shaping the oral microbiota through intimate kissing. Microbiome 2, 41 (2014).

  • 33.

    Lazarevic, V., Whiteson, K., Hernandez, D., François, P. & Schrenzel, J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics 11, 523 (2010).

  • 34.

    David, L.A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

  • 35.

    David, L.A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

  • 36.

    Maier, T.V. et al. Impact of dietary resistant starch on the human gut microbiome, metaprot
    eome, and metabolome
    . MBio. 8, e01343–e17 (2017).

  • 37.

    Hannigan, G.D. et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio 6, e01578–e15 (2015).

  • 38.

    Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

  • 39.

    Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

  • 40.

    Ma, B., Forney, L.J. & Ravel, J. Vaginal microbiome: rethinking health and disease. Annu. Rev. Microbiol. 66, 371–389 (2012).

  • 41.

    Ravel, J. et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome 1, 29 (2013).

  • 42.

    Romero, R. et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2, 4 (2014).

  • 43.

    Xiao, B. et al. Predictive value of the composition of the vaginal microbiota in bacterial vaginosis, a dynamic study to identify recurrence-related flora. Sci. Rep. 6, 26674 (2016).

  • 44.

    Albenberg, L.G. & Wu, G.D. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146, 1564–1572 (2014).

  • 45.

    Wu, G.D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

  • 46.

    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

  • 47.

    Zhang, C. et al. Dietary Modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children. EBioMedicine 2, 968–984 (2015).

  • 48.

    Modi, S.R., Collins, J.J. & Relman, D.A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).

  • 49.

    Dethlefsen, L. & Relman, D.A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).

  • 50.

    Maurice, C.F., Haiser, H.J. & Turnbaugh, P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

  • 51.

    Trasande, L. et al. Infant antibiotic exposures and early-life body mass. Int. J. Obes. (Lond). 37, 16–23 (2013).

  • 52.

    Song, S.J. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458 (2013).

  • 53.

    von Mutius, E. The microbial environment and its influence on asthma prevention in early life. J. Allergy Clin. Immunol. 137, 680–689 (2016).

  • 54.

    Stein, M.M. et al. Innate immunity and asthma risk in Amish and hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).

  • 55.

    Cook, M.D. et al. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunol. Cell Biol. 94, 158–163 (2016).

  • 56.

    Benedict, C. et al. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol. Metab. 5, 1175–1186 (2016).

  • 57.

    Karl, J.P. et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G559–G571 (2017).

  • 58.

    Ying, S. et al. The influence of age and gender on skin-associated microbial communities in urban and rural human populations. PLoS One 10, e0141842 (2015).

  • 59.

    Zheng, W. et al. Metagenomic sequencing reveals altered metabolic pathways in the oral microbiota of sailors during a long sea voyage. Sci. Rep. 5, 9131 (2015).

  • 60.

    Zozaya, M. et al. Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis. Microbiome 4, 16 (2016).

  • 61.

    Fei, N. & Zhao, L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 7, 880–884 (2013).

  • 62.

    Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

  • 63.

    Knight, R. et al. Unlocking the potential of metagenomics through replicated experimental design. Nat. Biotechnol. 30, 513–520 (2012).

  • 64.

    Fierer, N. et al. Forensic identification using skin bacterial communities. Proc. Natl. Acad. Sci. USA 107, 6477–6481 (2010).

  • 65.

    Flores, G.E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).

  • 66.

    Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52 (2012).

  • 67.

    Livanos, A.E. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat. Microbiol. 1, 16140 (2016).

  • 68.

    Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338, 496–500 (2012).

  • 69.

    Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011).

  • 70.

    Larsen, P.E., Field, D. & Gilbert, J.A. Predicting bacterial community assemblages using an artificial neural network approach. Nat. Methods 9, 621–625 (2012).

  • 71.

    Larsen, P.E. & Dai, Y. Metabolome of human gut microbiome is predictive of host dysbiosis. Gigascience 4, 42 (2015).

  • 72.< p id="ref72" class="tiny-space-below">Browne, H.P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

  • 73.

    Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943. e11 (2017).

  • 74.

    Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

  • 75.

    Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

  • 76.

    Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

  • 77.

    Mueller, N.T. et al. Does vaginal delivery mitigate or strengthen the intergenerational association of overweight and obesity? Findings from the Boston Birth Cohort. Int. J. Obes. (Lond). 41, 497–501 (2017).

  • 78.

    Raveh-Sadka, T. et al. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. eLife 4, 4 (2015).

  • 79.

    Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

  • 80.

    Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

  • 81.

    Costea, P.I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).

  • 82.

    Alivisatos, A.P. et al. MICROBIOME. A unified initiative to harness Earth’s microbiomes. Science 350, 507–508 (2015).

  • 83.

    Biteen, J.S. et al. Tools for the microbiome: nano and beyond. ACS Nano 10, 6–37 (2016).

  • 84.

    Luckey, T.D. Introduction to intestinal microecology. Am. J. Clin. Nutr. 25, 1292–1294 (1972).

  • 85.

    Rosner, J.L. Ten times more microbial cells than body cells in humans? Microbe 9, 47 (2014).

  • 86.

    Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

  • 87.

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

  • 88.

    Weingarden, A. et al. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3, 10 (2015).

  • 89.

    Kassam, Z., Lee, C.H., Yuan, Y. & Hunt, R.H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108, 500–508 (2013).

  • 90.

    Knights, D., Parfrey, L.W.
    , Zaneveld, J., Lozupone, C. & Knight, R. Human-associated microbial signatures: examining their predictive value. Cell Host Microbe 10, 292–296 (2011).

  • 91.

    Walters, W.A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233 (2014).

  • 92.

    Sze, M.A. & Schloss, P.D. Looking for a signal in the noise: revisiting obesity and the microbiome. MBio 7 (2016).

  • 93.

    Sahin, M. & Sur, M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 350, aab3897 (2015).

  • 94.

    McDonald, D. et al. Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microb. Ecol. Health Dis. 26, 26555 (2015).

  • 95.

    Kang, D.-W. et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8, e68322 (2013).

  • 96.

    Hsiao, E.Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

  • 97.

    Kang, D.-W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).

  • 98.

    Snijders, A.M. et al. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat. Microbiol. 2, 16221 (2016).

  • 99.

    Knights, D. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6, 107 (2014).

  • 100.

    Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

  • 101.

    Uusitalo, U. et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 170, 20–28 (2016).

  • 102.

    Blaser, M.J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).

  • 103.

    Arrieta, M.-C. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7, 307ra152 (2015).

  • 104.

    Durack, J. et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat. Commun. 9, 707 (2018).

  • 105.

    Fujimura, K.E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2018).

  • http://feeds.nature.com/nm/rss/current